Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736301

RESUMO

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Assuntos
COVID-19 , Mycobacterium , Criança , Humanos , Interferon gama , SARS-CoV-2 , Interferon-alfa , Fator Regulador 1 de Interferon
2.
Science ; 379(6632): eabo3627, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538032

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Assuntos
COVID-19 , Citocinas , Endorribonucleases , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , COVID-19/imunologia , Citocinas/genética , Citocinas/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA de Cadeia Dupla , SARS-CoV-2/genética , Síndrome de Resposta Inflamatória Sistêmica/genética
3.
Nat Cell Biol ; 24(12): 1714-1725, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471127

RESUMO

The endoplasmic reticulum (ER) coordinates mRNA translation and processing of secreted and endomembrane proteins. ER-associated degradation (ERAD) prevents the accumulation of misfolded proteins in the ER, but the physiological regulation of this process remains poorly characterized. Here, in a genetic screen using an ERAD model substrate in Caenorhabditis elegans, we identified an anti-viral RNA interference pathway, referred to as ER-associated RNA silencing (ERAS), which acts together with ERAD to preserve ER homeostasis and function. Induced by ER stress, ERAS is mediated by the Argonaute protein RDE-1/AGO2, is conserved in mammals and promotes ER-associated RNA turnover. ERAS and ERAD are complementary, as simultaneous inactivation of both quality-control pathways leads to increased ER stress, reduced protein quality control and impaired intestinal integrity. Collectively, our findings indicate that ER homeostasis and organismal health are protected by synergistic functions of ERAS and ERAD.


Assuntos
Retículo Endoplasmático , Interferência de RNA , Retículo Endoplasmático/genética
4.
Cell Rep ; 40(11): 111321, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103835

RESUMO

Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aciltransferases , Animais , Hepatócitos/metabolismo , Humanos , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Fosfolipases A2 Independentes de Cálcio
5.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708626

RESUMO

Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.


Assuntos
COVID-19 , Interferon Tipo I , Pneumonia , Adulto , COVID-19/genética , Criança , Humanos , Padrões de Herança , SARS-CoV-2
6.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648371

RESUMO

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Assuntos
RNA Viral/genética , Replicon/fisiologia , SARS-CoV-2/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Interferons/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , RNA Viral/metabolismo , Replicon/genética , Genética Reversa , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Saccharomyces cerevisiae/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Pseudotipagem Viral , Vírion/genética , Vírion/fisiologia , Replicação Viral
7.
Cell Host Microbe ; 29(2): 267-280.e5, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33357464

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen SARS-CoV-2 at two physiologically relevant temperatures along with three related coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-NL63, and HCoV-OC43), allowing us to probe this interactome at a much higher resolution than genome-scale studies. This approach yielded several insights, including potential virus-specific differences in Rab GTPase requirements and glycosylphosphatidylinositol (GPI) anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating coronavirus disease 2019 (COVID-19) and help prepare for future coronavirus outbreaks.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Sistemas CRISPR-Cas , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/metabolismo , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/metabolismo , Coronavirus Humano OC43 , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33382968

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , Células A549 , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus Humano 229E/fisiologia , Infecções por Coronavirus/virologia , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mapeamento de Interação de Proteínas
9.
bioRxiv ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33052332

RESUMO

The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTS: Genome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors.Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles.Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others.TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.

10.
bioRxiv ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935098

RESUMO

The ongoing SARS-CoV-2 pandemic has devastated the global economy and claimed nearly one million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen four related coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43 and SARS-CoV-2) at two physiologically relevant temperatures (33 °C and 37 °C), allowing us to probe this interactome at a much higher resolution relative to genome scale studies. This approach yielded several new insights, including unexpected virus and temperature specific differences in Rab GTPase requirements and GPI anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating COVID-19, and help prepare for future coronavirus outbreaks. HIGHLIGHTS: Focused CRISPR screens targeting host factors in the SARS-CoV-2 interactome were performed for SARS-CoV-2, HCoV-229E, HCoV-NL63, and HCoV-OC43 coronaviruses.Focused interactome CRISPR screens achieve higher resolution compared to genome-wide screens, leading to the identification of critical factors missed by the latter.Parallel CRISPR screens against multiple coronaviruses uncover host factors and pathways with pan-coronavirus and virus-specific functional roles.The number of host proteins that interact with a viral bait protein is not proportional to the number of functional interactors.Novel SARS-CoV-2 host factors are expressed in relevant cell types in the human airway.

11.
Science ; 370(6515)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32972995

RESUMO

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Mutação com Perda de Função , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Feminino , Loci Gênicos , Predisposição Genética para Doença , Humanos , Lactente , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Masculino , Pessoa de Meia-Idade , Pandemias , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , SARS-CoV-2 , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética , Adulto Jovem
12.
Science ; 370(6515)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32972996

RESUMO

Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.


Assuntos
Autoanticorpos/sangue , Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Interferon alfa-2/imunologia , Pneumonia Viral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Estudos de Casos e Controles , Estado Terminal , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
13.
J Vis Exp ; (159)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32538915

RESUMO

This paper presents a high-throughput reverse transcription quantitative PCR (RT-qPCR) assay for Caenorhabditis elegans that is fast, robust, and highly sensitive. This protocol obtains precise measurements of gene expression from single worms or from bulk samples. The protocol presented here provides a novel adaptation of existing methods for complementary DNA (cDNA) preparation coupled to a nanofluidic RT-qPCR platform. The first part of this protocol, named 'Worm-to-CT', allows cDNA production directly from nematodes without the need for prior mRNA isolation. It increases experimental throughput by allowing the preparation of cDNA from 96 worms in 3.5 h. The second part of the protocol uses existing nanofluidic technology to run high-throughput RT-qPCR on the cDNA. This paper evaluates two different nanofluidic chips: the first runs 96 samples and 96 targets, resulting in 9,216 reactions in approximately 1.5 days of benchwork. The second chip type consists of six 12 x 12 arrays, resulting in 864 reactions. Here, the Worm-to-CT method is demonstrated by quantifying mRNA levels of genes encoding heat shock proteins from single worms and from bulk samples. Provided is an extensive list of primers designed to amplify processed RNA for the majority of coding genes within the C. elegans genome.


Assuntos
Caenorhabditis elegans/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Proteínas de Caenorhabditis elegans/genética , Primers do DNA , DNA Complementar , DNA de Helmintos , Proteínas de Choque Térmico/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo
14.
J Exp Med ; 216(9): 2057-2070, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31270247

RESUMO

Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.


Assuntos
Padrões de Herança/genética , Vacina contra Sarampo/efeitos adversos , Receptor de Interferon alfa e beta/deficiência , Vacina contra Febre Amarela/efeitos adversos , Adolescente , Alelos , Criança , Feminino , Humanos , Imunidade , Lactente , Interferon Tipo I/metabolismo , Masculino , Vacina contra Sarampo/imunologia , Proteínas Mutantes/metabolismo , Mutação/genética , Linhagem , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Vacina contra Febre Amarela/imunologia
16.
Nat Struct Mol Biol ; 25(9): 778-786, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104661

RESUMO

RNA viruses are a major threat to animals and plants. RNA interference (RNAi) and the interferon response provide innate antiviral defense against RNA viruses. Here, we performed a large-scale screen using Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV), and we identified cde-1 as important for antiviral defense. CDE-1 is a homolog of the mammalian TUT4 and TUT7 terminal uridylyltransferases (collectively called TUT4(7)); its catalytic activity is required for its antiviral function. CDE-1 uridylates the 3' end of the OrV RNA genome and promotes its degradation in a manner independent of the RNAi pathway. Likewise, TUT4(7) enzymes uridylate influenza A virus (IAV) mRNAs in mammalian cells. Deletion of TUT4(7) leads to increased IAV mRNA and protein levels. Collectively, these data implicate 3'-terminal uridylation of viral RNAs as a conserved antiviral defense mechanism.


Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/virologia , Imunidade Inata , RNA Nucleotidiltransferases/metabolismo , Vírus de RNA/metabolismo , Células A549 , Animais , Caenorhabditis elegans/genética , Humanos , Interferência de RNA , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Transcriptoma , Replicação Viral
17.
J Virol ; 89(23): 12035-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26401037

RESUMO

UNLABELLED: Antiviral RNA-mediated silencing (RNA interference [RNAi]) acts as a powerful innate immunity defense in plants, invertebrates, and mammals. In Caenorhabditis elegans, RNAi is systemic; i.e., RNAi silencing signals can move between cells and tissues. Furthermore, RNAi effects can be inherited transgenerationally and may last for many generations. Neither the biological relevance of systemic RNAi nor transgenerational RNAi is currently understood. Here we examined the role of both pathways in the protection of C. elegans from viral infection. We studied the Orsay virus, a positive-strand RNA virus related to Nodaviridae and the first and only virus known to infect C. elegans. Immunity to Orsay virus infection requires the RNAi pathway. Surprisingly, we found that genes required for systemic or transgenerational RNAi did not have a role in antiviral defense. Furthermore, we found that Orsay virus infection did not elicit a systemic RNAi response even when a target for RNAi was provided by using transgenes. Finally, we show that viral siRNAs, the effectors of RNAi, are not inherited to a level that provides any significant resistance to viral infection in the next generation. We conclude that systemic or transgenerational RNAi does not play a role in the defense against natural Orsay virus infection. Furthermore, our data suggest that there is a qualitative difference between experimental RNAi and antiviral RNAi. Our data are consistent with a model of systemic and transgenerational RNAi that requires a nuclear or germ line component that is lacking in almost all RNA virus infections. IMPORTANCE: Since its discovery in Caenorhabditis elegans, RNAi has proven a valuable scientific tool in many organisms. In C. elegans, exogenous RNAi spreads throughout the organism and can be passed between generations; however, there has been controversy as to the endogenous role(s) that the RNAi pathway plays. One endogenous role for which spreading both within the infected organism and between generations would be advantageous is a role in viral defense. In plants, antiviral RNAi is systemic and the spread of RNAi between cells provides protection against subsequent viral infection. Here we investigated this by using the only naturally occurring virus known to infect C. elegans, Orsay virus, and surprisingly found that, in contrast to the exogenous RNAi pathway, the antiviral RNAi response targeted against this virus does not spread systemically throughout the organism and cannot be passed between generations. These results suggest that there are differences between the two pathways that remain to be discovered.


Assuntos
Caenorhabditis elegans/virologia , Imunidade Inata/imunologia , Padrões de Herança/imunologia , Modelos Imunológicos , Nodaviridae/imunologia , Interferência de RNA/imunologia , Animais , Sequência de Bases , Caenorhabditis elegans/imunologia , Análise em Microsséries , Dados de Sequência Molecular , Análise de Sequência de RNA
18.
BMC Bioinformatics ; 15: 377, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408240

RESUMO

BACKGROUND: Transposable elements (TEs) are DNA sequences that are able to move from their location in the genome by cutting or copying themselves to another locus. As such, they are increasingly recognized as impacting all aspects of genome function. With the dramatic reduction in cost of DNA sequencing, it is now possible to resequence whole genomes in order to systematically characterize novel TE mobilization in a particular individual. However, this task is made difficult by the inherently repetitive nature of TE sequences, which in some eukaryotes compose over half of the genome sequence. Currently, only a few software tools dedicated to the detection of TE mobilization using next-generation-sequencing are described in the literature. They often target specific TEs for which annotation is available, and are only able to identify families of closely related TEs, rather than individual elements. RESULTS: We present TE-Tracker, a general and accurate computational method for the de-novo detection of germ line TE mobilization from re-sequenced genomes, as well as the identification of both their source and destination sequences. We compare our method with the two classes of existing software: specialized TE-detection tools and generic structural variant (SV) detection tools. We show that TE-Tracker, while working independently of any prior annotation, bridges the gap between these two approaches in terms of detection power. Indeed, its positive predictive value (PPV) is comparable to that of dedicated TE software while its sensitivity is typical of a generic SV detection tool. TE-Tracker demonstrates the benefit of adopting an annotation-independent, de novo approach for the detection of TE mobilization events. We use TE-Tracker to provide a comprehensive view of transposition events induced by loss of DNA methylation in Arabidopsis. TE-Tracker is freely available at http://www.genoscope.cns.fr/TE-Tracker . CONCLUSIONS: We show that TE-Tracker accurately detects both the source and destination of novel transposition events in re-sequenced genomes. Moreover, TE-Tracker is able to detect all potential donor sequences for a given insertion, and can identify the correct one among them. Furthermore, TE-Tracker produces significantly fewer false positives than common SV detection programs, thus greatly facilitating the detection and analysis of TE mobilization events.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Metilação de DNA , Humanos
19.
Elife ; 2: e00994, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24137537

RESUMO

RNA interference defends against viral infection in plant and animal cells. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model of host-virus interaction. Using a genome-wide association study in C. elegans wild populations and quantitative trait locus mapping, we identify a 159 base-pair deletion in the conserved drh-1 gene (encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We show that DRH-1 is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain containing proteins trigger an interferon-based innate immunity pathway in response to RNA virus infection. Our work in C. elegans demonstrates that the RIG-I domain has an ancient role in viral recognition. We propose that RIG-I acts as modular viral recognition factor that couples viral recognition to different effector pathways including RNAi and interferon responses. DOI:http://dx.doi.org/10.7554/eLife.00994.001.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Deleção de Genes , Vírus de Plantas/fisiologia , Polimorfismo Genético , RNA Viral/genética , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/virologia , Vírus de Plantas/genética , Locos de Características Quantitativas
20.
Genome Res ; 23(8): 1258-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23811144

RESUMO

Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.


Assuntos
Caenorhabditis elegans/genética , Nodaviridae/genética , Interferência de RNA , RNA Viral/genética , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ontologia Genética , Genoma Helmíntico , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...